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Here we study the outflow of a viscous incompressible liquid from a rectangular nozzle 
into the submerged space of a Hele-Shaw cell (slot channel). The width of the nozzle is 
d = 2r >> h, where h is the thickness of the cell. The configuration of the flow region is 
shown in Fig. I. The characteristic linear dimension in the flow field is much larger than 
the thickness of the slot channel; therefore the change in the hydrodynamic characteristics 
of the flow in the horizontal direction can be determined by solving the two-dimensional 
equations of motion for quantities averaged in the vertical direction and by assuming that 
the vertical component of the velocity vector is zero. 

Equations of motion have been obtained [1] in the two-dimensional approximation for a 
linear relationship for the friction with the cell wall. This relationship corresponds to 
the laminar region of Reynolds numbers Re = 2Uh/v (U is the average flow velocity in the 
slot channel). These equations of motion were used in a numerical analysis [i]. Laser Dop- 
pler measurements of velocity [i] in the plane of symmetry of the cell (140 ! Re ! 7000) 
show that two regions form in the flow: a high-velocity jet flow dominated by inertial 
forces and a low-velocity jet flow. In the jet flow region, the streamlines are practically 
parallel to each other, and a sharp expansion of the jet occurs at its boundary. For Re > 
3000, the jet flow takes on a turbulent character and becomes laminar as it goes away from 
the opening of the nozzle and the axis of the jet. Friction at the cell walls is increased 
substantially in the turbulent regime, so a different friction relationship must be consid- 
ered in the equations of motion. 

Here we present a system of approximate two-dimensional equations which describe the 
jet flow in the slot channel in the transition regime (and which consider the laminarization 
of the flow). Results of a numerical analysis of these equations agree with experimental 
data [i]. 

The initial equations are the Reynolds equations, in which the vertical velocity com- 
ponent is assumed to be zero (the system of coordinates is chosen such that z = 0 is the 
plane of symmetry of the cell). The continuity equations are 

uOu/Ox + vOu/Oy = .(l/p)Op/Ox ~- OTx~/Ox + OT~y/Oy + (1) 
+ O~JOz, uOv/Ox + vOv/Oy = --(t/p)Op/Oy + O~y~/Ox + 

+ O~yulOg + O~u~/Oz, Ou/Ox + OvlOg = O. 

If we integrate the system (i) along z from 0 to h/2, we obtain 

- Ou - O-u i Op 07~x 07r~y 2 

uVi-~+vau p ~ + - ~  -t--bV+W'~wl z=~'/~- 

--Du, OulOx q- o~lOg = O, 

where the bar above the quantities denotes averaging over the z coordinate; D x and Dy are 
dispersion terms, which are related to the nonuniformity of the velocity profile in the 
direction of averaging (the problem of these terms is not modeled within the limits of this 
analysis). 

In the laminar flow regime the viscous dissipation mechanism is not dominant, and the 
inertial terms in the equations of motion are basically balanced by the pressure gradient 
and by terms resulting from friction on the cell walls (excluding a narrow region next to 
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Fig. 1 

the walls which are perpendiular to the plane of the cell). Also, in the turbulent regime, 
experiment [I] shows that the velocity profiles at the vertex have no flow perpendicular to 
the basic flow direction (as opposed to the corresponding profiles in the laminar regime). 
This indicates the importance of the turbulent flow mechanism and makes it necessary to 
model the turbulent transport terms in Eqs. (2), in order to have an adequate prediction of 
the hydrodynamic characteristics of the flow. 

Because the transverse dimensions of the jet flow are much smaller than the longitudi- 
nal dimensions, we neglect derivatives of the tangential stresses with respect to x as com- 
pared to the derivatives with respect to y. We assume (v t is the 
turbulent viscosity). 

We considered the following [two] representations for the turbulent viscosity: the 
Prandtl~ortler viscosity vt = 8~(x, 0) for free turbulence (5 = ctx is the width of the 
mixing zone and c t is an empirical constant); and vt = 8~(x, y). In the second case it is 
assumed that ~t + 0 near the boundary of the jet. 

The velocity dependence of the friction at the cell walls is given as a sum of quad- 
ratic and linear functions, which correspond to the turbulent and laminar flow regions, re- 
spectively: 

----~-Tx~l~=h/2 e f  v - 2 
= - - F g V  + l O - ~  u' h ~[z=hl2 = (3) 

c!  - v - 

= + 
h2 U 

In dimensionless variables, the flow function ~ and the vorticity ~ of the system (2) 
have the form 

a(u--~) a(v--m) ~ D a  ) a~ ) ax + ay a~ R-~ + ~t -@ + (4) 

0+ r V-l[ ( ~ ~; ) --Ou ] 
+ --s + c:- T (D--~ ~) s-~-+(l--s)-3f + l tWa- F - -  

-- ~ It'-Z ( V +  ~ 2 + ( ~ - ~ ) ~  ~ v ) + R-J~-* ] ' 
o~t o7 ~ o~t - o~ ~ e~ ~ + ~g~ (a ~ - ~)  

g=A~l~, + ov Ox ey e x '  u =  o-7' Ox' * =  e 

In Eqs. (4), the flow fuEction is made dimensionless with respect to Ur, the vorticity 
with respect to U/r, v t with Ur, and x and y with r. The reduced Reynolds number is Re* = 
Uhl/(rv), and the Darcy number for the Hele-Shaw cell is hl/(12rl). Introducing the auxil- 
iary function s in (4) makes it possible to avoid the instability in the iteration process 
of the numerical solution of this system of equations. For cf = O, the system (4)corre- 
sponds to Eq. (5) in [i]. 

The system (4) is solved by a finite-difference method. An "upwind" conservative dif- 
ference method is used [3], which approximates the convective terms to first order. The 
resultant system of nonlinear algebraic equations is solved by the Gauss-Seidel iteration 
method. A nonuniform 76 x 41 grid is used with increased nodes near the corners of the noz- 
zle opening. The dimensions of the calculational region in dimensionless variables were: 
width ~. ~ = 33, length s = 150 (~y corresponded to the width of the slot channel in the 
experiments [i] and tx was chosen such that the boundary conditions at the right boundary 
did not affect the solution). 

921 



�9 og=2~5 

o , e ~  oo 25~a'a o,e 

L YX 
o , 2 ~  0,2 

o "/ 5 31 o 
Fig. 2 

50 

$ 
1 j g 

Fig. 3 

U 

0~6 

o,2 

"'\. ~- 
\ . \  

~ \ . . , .  \ \ o# 

k ~ , , _ ~  o~2 

~b ' 3'o #o ~ o 

k%%~ 

N.\ 

'\ 
"\ 

o "\ 
o "\. 

o 

;'0 50 50 oc 

Fig. 4 Fig. 5 

The boundary conditions were as follows: at the solid boundaries of the flow field, 
= 1 and ~ was determined from the sticking condition described in Wood's form [3] to 

second order accuracy; on the axis of symmetry for y = 0m the flow was ~ = 0 and ~ = 0; on 
the right boundary (x = s of the calculational region ~ = Y/s and ~ = 0 (that is, the 
fluid flow for x = s is considered one-dimensional: ~ = i/s = 0). 

At the nozzle opening (x = 0 and 0 ! y ! i), the flow is assumed to be completely 
steady-state, that is 8~/8x = 0 and v = 0. The profile of the longitudinal velocity com- 
ponent at the nozzle opening corresponds to the velocity profile for laminar flow, which is 
found by solving the equation 

Da(d2u/dy 2) -- u = coast, ( 5 )  

w h i c h  s a t i s f i e s  t h e  c o n d i t i o n s  o f  c o n s t a n t  mass  f l o w  and t h e  b o u n d a r y  c o n d i t i o n s  

1 

d~ - ~dy=t, ~(0)=0, ~(t)=0. 
O 

The velocity profiles at the nozzle opening, which correspond to turbulent and laminar flows, 
evidently differ insignificantly from each other for d >> h, because, in the central part of 
the nozzle, they are close to constant along the y coordinate of the profile. Near the wall, 
the dissipative term in Eq. (5) is the basic effect on the velocity profile. 

The numerical solution is considered to converge when 

max ] 1 - -  ~!>+ 1)/~!~) I < 10--4 
. . T*3 I T I 3  
%3 

w h e r e  n i s  t h e  number  o f  i t e r a t i o n s  and ~ i , j  i s  t h e  v a l u e  o f  ~ a t  t h e  node  w i t h  c o o r d i n a t e s  
i and  j .  

We n o t e  t h a t  t h e  c a l c u l a t e d  v e l o c i t i e s  a r e  d e t e r m i n e d  as  t h e  a v e r a g e  o v e r  t h e  z c o o r d i -  
n a t e  i n  t h e  s l o t  c h a n n e l ,  w h i l e  t h e  e x p e r i m e n t a l  v e l o c i t y  u0 i s  m e a s u r e d  i n  t h e  p l a n e  o f  
symmet ry  o f  t h e  c h a n n e l .  The v a l u e  o f  ue i s  made d i m e n s i o n l e s s  w i t h  r e s p e c t  t o  t h e  maximum 
v e l o c i t y  a t  t h e  n o z z l e  o p e n i n g  u 0 ( 0 ,  0 ) :  u0 = c u / u ( 0 ,  0 ) , w h e r e  c = 1 i n  t h e  t u r b u l e n t  r e g i o n  
and c = 21 /16  i n  t h e  l a m i n a r  r e g i o n ,  i f  we assume t h a t  t h e  v e l o c i t y  p r o f i l e  i s  r e p r e s e n t e d  by 
a power  l aw w i t h  an e x p o n e n t  o f  1/7 i n  t h e  t u r b u l e n t  r e g i o n  and by a p a r a b o l a  i n  t h e  l a m i n a r  
r e g i o n .  As a r e s u l t ,  t h e  m e a s u r e d  v e l o c i t i e s ,  made d i m e n s i o n l e s s  w i t h  r e s p e c t  t o  u 0 ( 0 ,  0 ) ,  
s h o u l d  e x c e e d  t h e  c a l c u l a t e d  v a l u e s  by r o u g h l y  30% i n  t h e  l a m i n a r  r e g i o n ,  t h a t  i s  on t h e  
p e r i p h e r y  o f  t h e  j e t  and a t  a s u f f i c i e n t  d i s t a n c e  "downwind" f rom t h e  n o z z l e  o p e n i n g .  
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The calculated values of Re* = 370 and 525, and Da = 0.0036 corresponded to values in 
the experiment [i] (r/h = 4.8). 

In the quadratic term of the friction equation (3), we chose cf = 0.0045, which corre- 
sponds to the average value of cf from Blasius' formula [4] for the transition region 
(3,000 < Re < i0,000); c t = 0.001, which corresponds to c t for the Prandtl-Gortler viscosity 
for the case of an axisymmetric jet [4]. 

Figures 2 and 3 show the calculated profiles of the longitudinal velocity component 
~/~(0, 0) transverse to the jet for Re* = 525 for x = 2.5, 13.3, and 25 and Re* = 1370 for 
x = 3.3, 13.3, and 30, respectively. The dashed curves correspond to the viscosity vtl = 
0.001"x~(x, 0) and the solid curves to ~t2 = 0.001"xu(x, y). The points show the measured 
values of the ratio of the axial velocity [I] to the maximum value at the nozzle opening. The 
calculated curves, which correspond to these viscosities are in overall satisfactory agree- 
ment with the experimental results. Here the calculation with the viscosity vtl agree bet- 
ter with the test data near the jet axis and the calculations with vt2 agree better at its 
periphery. 

Figures 4 and 5 show the calculated curves for the axial velocity ~/~(0, 0) for Re* = 
525 and 370 respectively (solid lines), and the points show the measured values u0/u0(0, 0)~ 
The dash-dot lines, which correspond to the solution to the system (5) from [I] for a linear 
friction relationship, are much higher than the measured velocity values. The calcu- 
lated curves for ~tl and ~t2 practically coincide and reproduce the experimental data for 
x < 15 and Re* = 370 and for x < 25 and Re* = 525. At larger x values, the divergence be- 
tween the measured and calculated values of the axial velocity in the plane of sy~netry of 
the channel and the average [velocity] over its thickness is explained by the laminariza- 
tion of the jet; in this case, as noted previously, the measured u0/u0(0, 0) should exceed 
the calculated u/u (0, 0) by roughly 30%. 

Comparison of the calculated dependences and the experimental data shows that the model- 
ing system (4) as a whole makes it possible to predict the development of jet flow in the 
slot channel in the transition regime. 

1. 

2. 

3. 

4. 

LITERATURE CITED 

V. D. Zhak, V. A. Mukhin, V. E. Nakoryakov, and S. A. Safonov, "Propagation of a sub- 
merged jet in a narrow slot," Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1985). 
H. Gortler, "Calculation of the problem of free turbulence based on a new approxima- 
tion," ZAMM, No. 22 (1942). 
A. D. Gosmen, V. M. Pan, A. K. Ranchel, et al., Numerical Methods of Investigating the 
Flow of a Viscous Fluid [Russian translation], Mir, Moscow (1972). 
H. Schlichting, Boundary Layer Theory [Russian translation], Nauka, Moscow (1974). 

923 


